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ABSTRACT
We study the dynamics of a bi-threshold model of contagion,
wherein each node can be in one of two states (0 or 1), and
will only change state if a minimum number (specified by
an up-threshold and a down-threshold at each node) of its
neighbors are in the opposite state. This model applies to
processes where peer pressure is a strong factor in behavior
change in either direction, such as initiation and cessation
of smoking among adolescents.

We investigate this model both theoretically and experimen-
tally. On the theoretical side, we establish results which
show significant differences between simple contagions (where
all thresholds are 1) and complex contagions (where one or
more thresholds exceed 1) with respect to the complexity of
determining several global properties of the system. On the
experimental side, we apply this model to the data about
adolescent smoking behavior from the National Longitudi-
nal Study of Adolescent Health (Add Health) to analyze
network dynamics such as the rate of spread and outbreak
size.

Categories and Subject Descriptors
J.4 [Computer Applications]: Social and Behavioral Sci-
ences

General Terms
Algorithms, Experimentation, Theory

Keywords
Complex contagion, bi-threshold model, adolescent smok-
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1. INTRODUCTION

Many social phenomena, such as smoking behavior, spread
of information, diseases and viral marketing, can be mod-
eled as contagion processes [6, 9, 12, 18, 22, 24, 34], in which
an individual’s state or choice is influenced by her neighbors’
choices, leading to cascading effects. These models are pre-
dominantly progressive models [23], where in a two-state
{0, 1} system, nodes can only transition from 0 to 1; not 1 to
0. One way to capture this influence is through thresholds
(e.g., [6, 22]). Informally, if a sufficient (i.e., a threshold)
number of one’s neighbors behave in a particular way, the
node will also adopt that behavior.

Many real-world issues are characterized by two-choice back-
and-forth decisions where a node can change state back and
forth between 0 and 1. Schelling refers to this as cyclic
behavior (at the micro and macro levels), and states: “Nu-
merous social phenomena display cyclic behavior ...” (p.
86 [28]). He goes on to present everyday examples such as
whether pick-up volleyball games early in the fall semester
at Harvard will continue through the semester or die (e.g.,
individuals regularly choosing to play or not play). In refer-
ing to repeated decisions as to whether people will cross
a street against traffic lights, a threshold is used explicitly
in Schelling’s description: “At some point [after some have
walked into the street], several appear to decide that the flow
of pedestrians is large enough to be safe and they join it, en-
larging it further and making it safe for a few who were still
waiting and who now join in.” (p. 92 [28]). He also describes
how people may initially step out into the street, but will re-
treat if there is an insufficient number of followers. One can
also look at public health concerns such as obesity, where
an individual’s back-and-forth decisions to diet or not are so
commonplace that it has a name: “yo-yo dieting” [1]. More-
over, dieting decisions are peer-influenced [7]. The point is
that back-and-forth threshold systems are prevalent, and as
will be described, these systems are also applicable to smok-
ing.

The focus of our paper is studying a model for smoking
behavior in adolescents through social network analysis and
agent-based simulation (ABS). According to the World Health
Organization (WHO) [33], smoking is responsible for 10%
of all adult deaths and is the leading cause of preventable
deaths. According to The Centers for Disease Control and
Prevention, direct health care costs of smoking and produc-



tivity losses from adverse health are $96 billion and $97 bil-
lion annually, respectively [29].

A large number of factors are involved in the risk for smok-
ing initiation among adolescents, including place of resi-
dence [2], schools and peer networks [8, 31], parental and
familial influences [16], media messages [32], cigarette prices
and policies [26], socioeconomic factors [5], and biological
and cognitive factors [10]. However, Hoffman et al. recently
reviewed the literature on adolescent cigarette smoking and
found that peer influence, typically measured as the num-
ber of friends who smoke, has been repeatedly found to be
the strongest risk factor [21]. Other ways of measuring peer
influence, such as embeddedness in friendships, friendship
quality, and peer social status also confirm this basic pic-
ture [13]. Recently, Go et al. [17] examined the Add Health
data and showed that peer influence is a factor in both ini-
tiation and cessation of smoking among adolescents. Since
peer influence is the biggest factor in the spread of smoking
behavior, our model is especially appropriate for its study.

Christakis and Fowler showed through analysis of the Fram-
ingham Heart Study data that people tend to both start
and stop smoking in groups [8]. Simple independent cas-
cade models are unlikely to be valid for smoking behavior,
because they cannot ensure such a property. Complex conta-
gion models, in which a node switches from state 0 to state
1 if the number of neighbors in state 1 exceeds a thresh-
old, can exhibit such a property. However, these models are
monotone, and cannot explain other effects such as cessation
of smoking.

In this paper, we propose a novel bi-threshold model of com-
plex contagion, where transitions at each node are governed
by two threshold values. When a node is in state 0, it tran-
sitions to state 1 when the number of its neighbors in state
1 equals or exceeds its up-threshold, denoted tup. On the
other hand, when a node is in state 1, it transitions to state
0 when the number of its neighbors in state 0 equals or
exceeds its down-threshold, denoted by tdown. We apply
the bi-threshold model of complex contagion to data from
the National Longitudinal Study of Adolescent Health (Add
Health [20]) on the spread of smoking behavior through ado-
lescent friendship networks. Our main contributions are:

1. The bi-threshold model captures a number of effects
observed in smoking behavior, including changes in
groups and non-monotonic behavior, as we discuss later.
The dynamics of such models are very complex and
sensitive to the threshold values and underlying net-
works, which we verify empirically as well.

2. We study the complexity of the problems of comput-
ing dynamical properties of bi-threshold systems, e.g.,
reachability and fixed points, and show that they are
NP-complete or #P-complete, in general. For systems
with up and down threshold values of 1, we character-
ize the dynamics completely if the underlying contact
graph is undirected. However, the problems become
harder for directed graphs.

3. We infer parameters for a bi-threshold model to fit the
available data on smoking status in waves I and II of

the Add Health survey. This survey only has smoking
states for a subset of nodes, which allow us to infer
either an up or down threshold for them. We use a
regression analysis to infer the initial states and the
remaining thresholds for all the nodes.

4. We experimentally characterize the dynamical proper-
ties of such systems, and find that they generally con-
verge to a set of pseudo-stationary configurations, in
which the number of nodes in state 1 (i.e., the smoking
state) does not vary much.

5. We find that high out-degree nodes have a significant
impact on the rate of prevalence or cessation of smok-
ing. If a small fraction (about 3.5%) of the highest out-
degree nodes become smokers, the fraction of nodes
in state 1 is almost doubled. On the other hand, if
the same fraction of nodes becomes non-smokers, the
fraction of nodes in state 1 reduces to a third. This
corroborates with the observation that peer-influence
is one of the most significant determinants of smoking
behavior [8, 21].

Thus, the bi-threshold model generalizes a number of earlier
threshold-based models for contagion. It captures complex
non-monotonic diffusion phenomena, such as smoking be-
havior, much more realistically than other contagion mod-
els. Formal validation of the applicability of this model in
the context of smoking behavior is difficult because of lack
of adequate longitudinal smoking behavior data. This is
a general problem with social phenomena that occur on a
timescale of years, because gathering a large enough sam-
ple over many years is an effortful enterprise. For instance,
the Add Health data only has partial information of the
smoking states of a subset of the population studied over
waves I and II. Nonetheless, our results with the networks in
the Add Health data show many of the qualitative features
observed by empirical studies on smoking behavior (which
are not based on networked processes). Our approach is
a first step towards providing a formal framework to unify
and explain the diverse results on smoking behavior, and
can help in evaluating and designing policies for controlling
its spread. Further, smoking is a prototypical example, and
such a framework would be useful in other applications.

Organization. In Section 2, we formally describe the bi-
threshold model, following which we describe related work
(Section 3) and then prove several theoretical results about
the bi-threshold model in Section 4. In Section 5, we de-
scribe the Add Health data and our methodology for build-
ing the bi-threshold model to fit these data. We numerically
explore the behavior of the bi-threshold model on the five
largest friendship networks from the data. Comparing data
from wave I and wave II allows us to construct a model for
estimating threshold values for each node in the networks.
In Section 6, we perform ABS with these estimated thresh-
old parameters to study the dynamics of this model.

2. MODEL DESCRIPTION
2.1 Definition of the Bi-threshold Model
We model the propagation of contagions over a social net-
work using discrete dynamical systems (e.g. [3]). We begin



with a definition of the model. Let B denote the Boolean do-
main {0,1}. A Synchronous Dynamical System (SyDS)
S over B is specified as a pair S = (G,F), where (a) G(V,E),
an undirected graph with n nodes, represents the underlying
social network over which the contagion propagates, and (b)
F = {f1, f2, . . . , fn} is a collection of functions in the sys-
tem, with fi denoting the local transition function that
computes the next state of vi, 1 ≤ i ≤ n.

Each function fi specifies the local interaction between node
vi and its neighbors in G. (We use the convention that
a node is not a neighbor of itself.) To provide additional
details regarding these functions, we note that each node of
G has a state value from B. The inputs to function fi are
the state of vi and those of the neighbors of vi in G; function
fi maps each combination of inputs to a value in B. In this
paper, function fi at node vi is a bi-threshold function,
characterized by two non-negative integer values denoted by
tup(vi) and tdown(vi). A precise definition of the function fi

is as follows.

(a) If the state of vi is 0, then fi is 1 if at least tup(vi) of the
neighbors of vi are in state 1; otherwise, the value of fi is 0.

(b) If the state of vi is 1, then fi is 0 if at least tdown(vi) of
the neighbors of vi are in state 0; otherwise, fi = 1.

Thus, tup(vi), called the up-threshold of vi, represents the
minimum number of neighbors of vi that must be in state
1 for vi to change from 0 to 1. Likewise, tdown(vi), called
the down-threshold of vi, represents the minimum number
of neighbors of vi that must be in state 0 for vi to change
from 1 to 0. A SyDS in which each node has a bi-threshold
transition function is called a bi-threshold SyDS, denoted
by BT-SyDS.

A configuration C of a SyDS at any time is an n-vector
(s1, s2, . . . , sn), where si ∈ B is the value of the state of
node vi. A single SyDS transition from one configuration to
another can be expressed by the following pseudocode.

for each node vi do in parallel
(i) Compute the value of fi. Let s′i denote this value.
(ii) Update the state of vi to s′i.

end for

Thus, in a SyDS, nodes update their state synchronously.
Other update disciplines (e.g. sequential updates) for dis-
crete dynamical systems have also been considered in the
literature [3].

If a SyDS has a transition from configuration C1 to config-
uration C2, we say that C2 is the successor of C1 and that
C1 is a predecessor of C2. A configuration that has no pre-
decessor is called a garden of eden (GE) configuration. A
configuration C is called a fixed point if the successor of C
is C itself.

One can also define the bi-threshold model where the un-
derlying graph of the dynamical system is directed. This is
useful in modeling diffusion processes where the the influ-
ence relation between pairs of nodes is not symmetric; for
example, a node u may influence another node v, but v may

v1

v2 v3

v4 v5 v6 v7

Figure 1: A directed BT-SyDS to illustrate an ob-
served behavior.

not have any influence on u. This asymmetry holds in the
context of peer influence which is known to play a major
role in the smoking behavior of adolescents (e.g., see [21]).
If u influences v, the underlying graph contains the directed
edge (u, v). The threshold values are with respect to the in-
neighbors of a node v, that is, the set of nodes which have
a directed edge to v. Thus, if a node v has an up-threshold
tup(v), then at least tup(v) of its in-neighbors must be state
1 for v to change from 0 to 1. A similar explanation holds
for the down-threshold values.

Motivation: modeling smoking behavior. We now present a
toy example to point out that the bi-threshold model with
directed graphs can capture some observed behaviors in the
context of smoking. In the literature, it is noted that “over
time smokers were more likely to appear at the periphery”
of the underlying social network [8]. To see how this be-
havior can occur under the bi-threshold model, consider the
directed tree shown in Figure 1. Initially, the root node v1
is in state 1 (corresponding to a smoker) and all the other
nodes are in state 0 (corresponding to non-smokers). For
each node, up-threshold is set to 1. For v1, the down thresh-
old is set to 0; for v2 and v3, the down threshold is set to 1,
and for nodes v4 through v7, the down threshold is set to 2.
It can be verified that during the first time step, v1 changes
to 0, v2 and v3 change to 1, while the other nodes remain at
0. During the second time step, v1 remains at 0, v2 and v3
change to 0 and the other nodes change to 1. This is a fixed
point of the system, and the nodes in state 1 correspond to
leaves which are at the periphery of the graph. Also, ob-
serve that nodes v2, v3 simultaneously switch to state 1 in
time step 2, and then switch to state 0 in time step 3. This
captures the observation of Christakis and Fowler [8], that
people tend to both start and stop smoking in groups.

2.2 Additional Definitions Related to the Model
For any SyDS S, the phase space of S is a directed graph
with one node for each possible configuration; there is a di-
rected edge from the node representing configuration C to

that representing configuration C
′

if and only if C
′

is the
successor of C. Since the domain is B = {0,1} and the un-
derlying graph has n nodes, the number of nodes in the phase
space is 2n; thus, the size of the phase space is exponential
in the size of the SyDS.

As defined above, the SyDS model is deterministic; that
is, each configuration has a unique successor. Thus, the
outdegree of each node in the phase space is 1. Each fixed
point of a SyDS S is a self loop in the phase space of S.
Also, for any GE configuration, the corresponding node in
the phase space has its indegree equal to zero.



A BT-SyDS in which tup(v) = tdown(v) = 1 for each node v
is called a simple BT-SyDS. If at least one of the threshold
values in S is greater than 1, then S is referred to as a
complex BT-SyDS.

If tup(v) = 0 for some node v, then the state of v changes
from 0 to 1 even when none of the neighbors of v is 1. We
call such a node v an uncontrolled up node. Likewise, if
tdown(v) = 0 for some node v, then node v will be referred
to as an uncontrolled down node.

2.3 Computational Problems for BT-SyDSs
We study a number of different computational problems for
BT-SyDSs. These problems model several questions regard-
ing the global behavior of the underlying social network.
Our results show a number of interesting differences between
the complexities of these problems for simple and complex
BT-SyDSs. Formal definitions of the problems studied in
this paper are given below. In the literature, some of these
problems have been considered for other dynamical system
models (e.g. [3]).

Given a BT-SyDS S, the Fixed Point Existence (Fpe)
problem asks whether S has a fixed point. The correspond-
ing counting problem (i.e., finding the number of fixed points
of S) is denoted by #Fpe.

Given a BT-SyDS S and a configuration C, the Predeces-
sor Existence (Pre) problem asks whether the configura-
tion C has a predecessor. The corresponding counting prob-
lem (i.e., finding the number of predecessors) is denoted by
#Pre.

Given a BT-SyDS S and two configurations C1 and C2,
the Configuration Reachability (Reach) problem asks
whether the system can reach C2 starting from C1.

Analytical results for the above problems are presented in
Section 4.

3. RELATED WORK
Works on smoking behavior were presented in Section 1 and
are not repeated. Here, we focus on contagion models and
complexity results for contagion processes.

Different models have been used to study contagion pro-
cesses, such as the independent cascade model, complex con-
tagion [6] and its special case, the linear threshold model
[22], and the linear influence model (LIM) [34]. Important
questions in such applications include understanding steady
state behavior, identifying influential individuals and the im-
pact of network structure, and designing strategies to control
the spread [12, 19, 22]. Yang et al., [34] use the linear influ-
ence model to fit the dynamics of information diffusion in
Twitter. These models are so-called progressive models in
which the only state transition allowed in a two-state {0, 1}
system is from state 0 to state 1.

Back-and-forth models also include the transition from state
1 to state 0. In the voter model [14], a node assumes the
state of one randomly chosen neighbor, so that not all neigh-
bors provide influence at each time, as does our model. In
majority models (e.g., [11]), if one-half or more of a node’s

neighbors are in the opposite state, then a node transitions
to that state. Our model is more general in that we can
specify any minimum number of neighbors required to cause
state transition, which may be more or less than one-half of
nodes. We can also use relative thresholds, where a node’s
absolute threshold is normalized by its degree. A back-and-
forth model is presented in [4]. However, that uniform mix-
ing model assumes every node is connected to (and influ-
enced by) all other nodes, so the graph forms a clique, and
therefore that all information is globally known. In contrast,
our system takes into account a population’s connectivity,
so that a node’s interactions are local (confined to its neigh-
borhood), which is more realistic in many cases. If global
knowledge is required, we merely add a node and connect it
to all others.

There are numerous results for computational complexity.
In [22], the problem of finding the set of nodes of maximum
size β that will result in the most nodes reached by a pro-
gressive diffusion process is shown to be NP-hard. A series
of extensions is provided in papers up through [27]. See [25]
for results on blocking diffusion. Results for the voter model
and majority model are given in [14] and [11], respectively.
We know of no complexity results for bithreshold models.

4. PHASE SPACE PROPERTIES OF
BT-SyDSs: COMPLEXITY RESULTS

In this section, we present results on the complexity of test-
ing various phase space properties for bi-threshold systems.
The results are presented for the case of undirected graphs.
By replacing each undirected edge {u, v} by the pair of di-
rected edges (u, v) and (v, u), it can be seen that the hard-
ness results carry over to the directed case as well. We also
discuss an interesting difference between the undirected and
directed graph models with respect to phase space proper-
ties.

Due to space limitations, full proofs will appear in a com-
plete version of this paper.

4.1 Fixed Point Existence and Counting
If a BT-SyDS does not have any uncontrolled up (down)
nodes, then the configuration of all 0’s (1’s) is a fixed point.
Therefore, the NP-hardness results given below for the Fpe
problem are for BT-SyDSs which contain nodes with up-
threshold = 0 as well as those with down-threshold = 0.

Theorem 4.1. (i) The Fpe and #Fpe problems can be
solved efficiently for BT-SyDSs with a maximum threshold
of 1.
(ii) The Fpe and #Fpe problems are NP-complete and #P-
complete respectively for BT-SyDSs where the maximum thresh-
old is 2.

Proof sketch: Part (i) is proven by considering each con-
nected component (CC) of the underlying graph and show-
ing that there are at most two candidate fixed points for
the CC. Part (ii) is proven by a reduction from a restricted
version of the Boolean Satisfiability problem (SAT), where
each clause contains two or three literals and each literal ap-
pears in one or two clauses. (This restricted version of SAT
is known be NP-complete [15].)



One may also consider variants of the Fpe problem such as
the following: Given a BT-SyDS S and an integer q ≤ n,
does S have a fixed point in which at most q nodes are in
state 1? This variant, which we denoted by Min-1-FPE, is
motivated by the problem of determining whether a given
social network has a stable configuration with only a small
number of nodes in state 1. The following results hold for
Min-1-FPE.

Theorem 4.2. (i) The Min-1-FPE problem can be solved
efficiently for BT-SyDSs with a maximum threshold of 1.
(ii) The Min-1-FPE problem is NP-complete for BT-SyDSs
where the maximum threshold is 2.

Proof sketch: Part (i) is proven by constructing a config-
uration C such that the only nodes which are in state 1 in C
are those nodes which must be in state 1 in any fixed point
of S. The answer to the Min-1-FPE instance is “yes” if and
only if C is a fixed point and the number of nodes in state 1
in C is at most q. Part (ii) follows immediately from the NP-
completeness of the Fpe problems for BT-SyDSs in which
the maximum threshold value is 2 (Part (ii) of Theorem 4.1)
by setting q = n.

The above theorems provide a clear delineation between the
complexities of Fpe and #Fpe problems for simple and com-
plex contagions.

4.2 Predecessor Existence and Counting
Theorem 4.3. (i) The Pre problem can be solved effi-

ciently for BT-SyDSs with a maximum threshold of 1.
(ii) The #Pre problem is #P-complete even when the max-
imum threshold is 1.
(iii) The Pre problem is NP-complete for BT-SyDSs even
when all thresholds are 2.

Proof (idea): Part (i) is proven by a careful analysis of
the phase space of the system. (The proof involves sev-
eral lemmas that capture how thresholds and state values of
neighbors of a node v determine the state value of v in the
predecessor configuration, if such a configuration exists.)

Part (ii) is shown by a parsimonious reduction from the
problem of counting the number of satisfying assignments
to 2CNF formulas which contain only positive literals. (The
latter problem was shown to be #P-complete in [30].)

Part (iii) is shown by a reduction from a special version of
SAT mentioned in the proof sketch for Theorem 4.1.

4.3 Reachability Problem
Theorem 4.4. The Reach problem can be solved effi-

ciently for BT-SyDSs with a maximum threshold of 1.

Proof (idea): This theorem is also proven by a careful
analysis of the phase space of the system. In particular, the
proof shows that BT-SyDSs in which the maximum thresh-
old value is 1 either reach a fixed point or a 2-cycle in the
phase space after a number of transitions that is bounded
by the diameter of the underlying graph.

Like the Fpe problem, one may also consider variants of the
Reach problem. One such variant is the following: Given
a BT-SyDS S an initial configuration C and an integer q ≤
n, does the system reach a configuration in which at most

q nodes are in state 1? If nodes in state 1 correspond to
smokers, this question asks whether a social network will
reach a configuration with a small number of smokers. This
variant of reachability can also be solved efficiently for BT-
SyDSs in which the maximum threshold value is 1 using the
proof idea for Theorem 4.4 mentioned above.

Whether the Reach problem and its variant mentioned above
can be solved efficiently for complex BT-SyDSs remains an
open question. Below, we investigate it through simulation.

4.4 Undirected and Directed Graph Models
We now point out an interesting difference between the phase
spaces of BT-SyDSs under undirected and directed graph
models. As mentioned in the proof sketch for Theorem 4.4,
for undirected graphs, when each threshold value is at most
1, every directed cycle in the phase space has length at
most 2. This property doesn’t hold when the underlying
graph is directed. To see this, consider a BT-SyDS where
the underlying graph is a simple directed cycle with n ≥ 3
nodes. Let V = {v1, v2, . . . , vn} denote the nodes and let
A = {(v1, v2), (v2, v3), . . . , (vn−1, vn), (vn, v1)} be the edge
set. Assume that the up and down threshold for each node
is 1. In the initial configuration, let the state of v1 be 1
and the states of the other nodes be 0. It can be veri-
fied that during successive time steps, the 1 value circulates
among the nodes of the system, creating a cycle of length
n in the phase space. One can construct other examples of
BT-SyDSs with directed graphs such that their phase spaces
have even longer cycles. Such examples point out that there
are significant differences between the phase spaces of BT-
SyDSs with undirected and directed graphs.

We now apply the bi-threshold model to smoking data from
Add Health.

5. PARAMETER ESTIMATION
We focus on waves I and II of the Add Health survey [20].
Wave I data, collected in 1994-95, contain 85 adolescent
friendship networks which were obtained by asking students
at participating middle and high schools to nominate their
friends. The networks contain 72589 distinct IDs. Of these,
in-home interviews were conducted with 20746 individuals.
For the present study, the variables we looked at were: whether
the individual had smoked in the last 30 days, whether ei-
ther of the individual’s parents smoke, and the individual’s
age and gender. In wave II, follow-up interviews were con-
ducted (in 1995-96) with 14739 of these individuals, and the
same data were gathered again.

(a) (b)

Figure 2: Frequency distributions of (a) indegree
and (b) outdegree for five of the largest networks
from the Add Health data set.



For the construction of the friendship networks, each person
was asked to name up to five male and five female friends.
We take these friends as influencers of the person; i.e., these
friends influence the smoking behavior of the person. A
directed edge (u, v) from node u to node v means that u
influences v. Thus, a node’s in-degree is the number of in-
fluencers for that node, and has a maximum value of 10.
The maximum out-degree of any node was 36; i.e., some
individuals influence 36 others. In-degree and out-degree
distributions for the five largest networks, with numbers of
nodes ranging from 2000 to 2600, are shown in Figure 2.

Since the variables of interest are not available for the indi-
viduals who were not interviewed at home, we first take
some simple steps to fill in the missing data. From the
∼ 14000 nodes for which age is known, a histogram was
generated. Ages were assigned to unknown nodes randomly
from the resulting distribution. For nodes with unknown
gender, male or female was assigned with 50% probability.
Parents’ smoking status (hereafter PS) is known for ∼17000
nodes; of these, 75% of nodes had PS value of 1 (i.e., at least
one parent smokes). Nodes with unknown PS were assigned
1 with a 0.75 probability. This procedure was applied to the
entire data set, rather than to data for individual networks,
because for some networks the available data were meager.

We then performed a set of Poisson regressions, grouping
nodes by age, and then using gender and PS to determine
the probability of being a smoker. This was used to fill
in initial (wave I) smoking states for nodes for which this
variable was unknown. For each node, the initial state is
decided based on v = Poisson(λ), where Poisson(λ) is the
realization of a Poisson random number. If v = 0, the initial
state is 0 (i.e., non-smoking) and if v > 0, the initial state
is 1. Values for these fits for each age are given in Table 1.
There the columns are the gender of the child and whether
the parents smoke or not. This process of assigning age,
gender, PS, and initial smoking state provides one collection
of traits and initial state. To assess variability, this process
was repeated 500 times. Hence, nodes with unknown traits
or initial state were assigned different values across the 500
instances, but known values for nodes were always used.
The initial smoking states are used directly to specify the
initial configuration for each of 500 diffusion instances of
simulations in the next section. Roughly two-thirds of nodes
are initially in the non-smoking (0) state for each of the
500 instances. Both traits and initial state were also used
to derive regressions for tup and tdown, as described next.
One threshold can be inferred for every node for which the

Age F, PS = 0 M, PS = 0 F, PS = 1 M, PS = 1
13 0.08 0.08 0.2 0.2
14 0.12 0.14 0.3 0.33
15 0.23 0.23 0.47 0.47
16 0.24 0.25 0.47 0.5
17 0.27 0.32 0.53 0.63
18 0.31 0.39 0.52 0.65

Table 1: λ values by age, gender, and parents smok-
ing status (PS) for deciding the initial smoking state
of nodes in the networks. Values have been rounded
to two places after the decimal point for presenta-
tion here.

(a) (b)

Figure 3: Twenty randomly chosen sets of up and
down threshold distributions (out of the 500 total
sets) for (a) network 1044 and (b) network 1049.
Thresholds of 11 mean essentially an infinite thresh-
old because the maximum indegree of any node is
10; such nodes are “pure influencers.”

smoking states in wave I and wave II are known. The rules
for determining thresholds are as follows. If a node is in state
0 in wave I and state 1 in wave II, then an up-transition has
taken place. Hence, the up-threshold is at most the number
γ of influencers in state 1 in wave I. The up-threshold is
assigned uniformly at random from the interval [0, γ]. For
nodes that are in state 1 in wave I and state 0 in wave II,
the down-threshold is determined analogously. For nodes
that are in state 0 in both wave I and wave II, the number
of wave I influencers in state 1 is not sufficient to cause an
up-transition, and hence the up-threshold for the node is
at least (γ + 1), and we use this value. Again, a similar
argument is made for the down-threshold. Approximately
8100 thresholds were inferred in this manner.

We now have for all nodes the values of the three traits and
the initial smoking state, and for 8100 nodes, one threshold
value. Linear regressions were performed to determine up-
threshold as a function of the three traits and in-degree and
out-degree for each of the 500 collections, and similarly for
down-threshold, and these procedures yielded low variances.
Up and down threshold distributions for 20 randomly chosen
threshold assignments for two networks are given in Fig. 3.

6. SIMULATIONS AND RESULTS
We perform simulations to study multiple questions about
the model. We use the largest five of the 85 networks from
Add Health and the simulation parameters described in Sec-
tion 5. We present results that elucidate the long-term dy-
namics of our model, and its sensitivity to different param-
eters. Then we conduct experiments where we freeze the
highest out-degree nodes to study the impact of the thresh-
olds of the hubs on the prevalence and cessation of smoking
behavior in the network as a whole. We tie results to smok-
ing behavior. Our main results are summarized below.

1. In our simulations we find that the system seems to
converge to a“pseudo-stationary”state where the num-
ber of nodes in state 1 does not vary very much.

2. We find the results are very sensitive to the choices of
thresholds. Increasing tup and tdown uniformly (i.e.,
tup = tdown = t) has interesting non-monotone effects.
The fraction of nodes in state 1 decreases initially as t
increases from 1 to 2, and then surprisingly falls be-
low the fraction of 1-nodes in the initial configura-
tion as t is further increased to 5. Note that this is
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Figure 4: Dynamics for network 1049 for different tup = tdown. (a) Fraction of nodes currently in state 1 as
a function of time; (b) fraction of nodes transitioning to state 0; and (c) fraction of nodes transitioning to
state 1. Figure (a) shows that the steady-state fraction of nodes in state 1 does not decrease monotonically
to the initial fraction (at time 0), but rather as threshold increases to 3 and 5, the fractions of nodes in state
1 becomes less than the initial fraction.

counter to the behavior that would be observed if only
the up-thresholds were increased, and thus the down-
thresholds have an important role in this behavior.

3. We find that there can be large differences in the dy-
namics across different iterations, even if threshold val-
ues and proportion of initial smokers are held constant
across iterations. The differences arise solely due to
differences in initial conditions. These changes show
up as subtle differences in average-case behavior, but
show up as large differences when we plot the dynamics
for all the individual iterations.

4. We find that nodes of high out-degree are highly in-
fluential in both prevalence and cessation of smoking
rates. If a small fraction (3.5%) of the nodes with the
highest out-degrees are permanent smokers (i.e., have
states fixed at 1), the number of nodes in state 1 more
than doubles. On the other hand, if this same set of
nodes remain non-smokers (i.e., their states are fixed
at 0), the fraction of nodes in state 1 becomes less than
a third. This corroborates the observations that peer
pressure has a significant impact on smoking [8, 21].

An iteration is a diffusion instance, where all nodes are
assigned an initial state (either 0 or 1) and constant values
for tup and tdown. We only consider the first 50 time steps in
the temporal evolution, where each step corresponds to one
year, consistent with the one-year duration between wave I
and wave II data sets in Add Health.

A simulation consists of a set of 100 or 500 iterations, each
using a different set of initial state assignments. All the fig-
ures showing simulation results show curves which are calcu-
lated as point-wise averages from the set of iterations. Some
of the figures (as will be noted) also show the dynamics of the
individual iterations. Nodes whose initial states are known
have the same initial state in all iterations; the remaining
nodes are assigned a state according to their traits (age, gen-
der, and whether their parents smoke), which can vary across
iterations, as described in Sec. 5. Similarly, nodes for which
a threshold can be inferred had the same inferred threshold
over all iterations, but the other threshold for such nodes
(either tup or tdown), as well as both thresholds for other
nodes, were assigned based on regressions that incorporate
node traits. We discuss these experiments below.

1. Sensitivity to up and down threshold values. Nodes of
networks were assigned homogeneous thresholds with tup =

tdown = 1, 2, 3, 5, and 10 for five simulations. Initial states
were taken from the data sets. Average results in time over
100 iterations for network 1049 are provided in Figure 4.
There is an initial transient phase, followed by a quasi-steady
state phase where the behavior is approximately periodic.
One would intuitively expect that as thresholds increase,
the numbers of state transitions would decrease, and hence
that the number of nodes in state 1 would monotonically
approach that of the initial state configuration for all times.
Figure 4(a) clearly shows that this is not the case. As thresh-
old increases from 1 to 2, the numbers of nodes in state 1
decreases, but when thresholds increase to 3 and 5, the num-
bers of nodes in state 1 decrease below that of the initial
configuration, before returning to the numbers of nodes in
the initial configuration for threshold 10. Figures 4(b) and
4(c) show that the relative numbers of nodes transitioning
to state 0 and state 1, respectively, are different for differ-
ent thresholds in the transient regime, and these differences
dictate whether the steady state fraction of nodes in state 1
is more or less than that of the initial configuration. These
results are representative of the networks studied.

Note that the oscillations for tup = tdown = 1 represent
extreme behavior, perhaps applicable only to situations like
street crossings in Section 1. However, it is interesting how
increasing the thresholds by one attenuates the oscillations.

2. Variation across networks. Applying the heterogeneous
thresholds and initial states of nodes as presented in Section
5 yields differences in behaviors across networks, exempli-
fied by the results of Figure 5, which are average curves over
500 iterations. Network 1044 shows a decrease in numbers
of nodes in state 1 over time, while other networks show an
initial decrease, followed by an increase. The other two plots
show that the numbers of nodes transitioning to state 0 are
greater at the beginning of a simulation compared to the
numbers changing to state 1, but that over time, the state
transitions to 1 gradually increase. The plots also indicate
that the numbers of nodes transitioning can fluctuate over
10 to 20 or more time steps (years) before settling to approx-
imately steady state values. These swings are: (i) qualita-
tively similar to gradual changes observed in smoking, and
(ii) illustrate that the model can produce “overshooting,”
which is important for social applications [4, 28].

3. Variance in long-term dynamics. Thus far, average be-
haviors have been emphasized to illustrate high-level trends.
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Figure 5: Dynamics for five networks for heterogeneous threshold values mined and inferred from observa-
tions. (a) Fraction of nodes currently in state 1; (b) fraction of nodes transitioning to state 0; and (c) fraction
of nodes transitioning to state 1. These figures show that the average fractions of nodes in state 1 can either
increase or decrease, or both, at early times, with transients out beyond time 20.

(a) (b) (c) (d)

Figure 6: Dynamics for two networks showing 500 individual diffusion instances. (a) Fraction of nodes
currently in state 1 for network 1044; (b) fraction of nodes transitioning to state 1 for network 1044; (c)
fraction of nodes currently in state 1 for network 1049; (d) fraction of nodes transitioning to state 1 for
network 1049. These results illustrate that focusing solely on average behavior hides ranges in behavior
provided by individual diffusion instances.

However, average behaviors can hide variations in results
across individual diffusion instances, and examples of this
are depicted in Figure 6. The number of nodes in state 1
and the number of nodes transitioning to state 1 are pro-
vided for network 1044 in the first two plots, followed by
corresponding plots for network 1049. Figures 6(a) and 6(c)
show that differences in the average curves (in green) are
driven primarily by diffusion instances for network 1049 that
achieve 80% or more of nodes in state 1, and by diffusion
instances for network 1044 that generate lesser fractions of
nodes in state 1. Note that many instances between the two
networks are within the same band. Figure 6(c) also indi-
cates, through iterations whose curves are trending upwards
at times between 40 to 50 steps, that transient behavior
exists out to 50 years and beyond. Differences are also ob-
served between Figures 6(b) and 6(d). The iterations in
Figure 6(d) that tend to zero correspond to the iterations
whose fraction of nodes in state 1 are 0.80 and above. There
are no more nodes that can reach state 1, driving the num-
ber transitioning to zero. The plots for fractions of nodes
transitioning to state 0 are very similar to those of Figures
6(b) and 6(d), so that the greater fractions in Figure 6(d)
are offset by down transitions. Because the actual effects of
smoking prevention policies correspond to one diffusion in-
stance, policy makers must be aware that predicted average
trends can hide complicated behaviors across iterations.

4. Relative influence of nodes in smoking prevalence and
cessation. Correlation between the behavior of the popu-
lar students and of the group as a whole is well accepted,

however causality can be argued in both directions. For
example, Valente et al. [31] investigated the possibility that
popular students are more susceptible to taking up smoking,
by surveying middle-schoolers in southern California about
their commitment not to smoke in the future. They found
that popular students were statistically less likely to make
the commitment. On the other hand, it can be argued that
smoking becomes widespread in a network precisely if the
popular students start smoking.

We present some simulations that show that the bi-threshold
model exhibits a similar relationship between the states of
the highest out-degree nodes and the fraction of smokers in
the network. (The following results also control for the at-
most q nodes in state 1, which is related to the variant of
the Reach problem for complex BT-SyDSs in Section 4.3.)
Specifically, we compare the effects of choosing a subset of
nodes S according to two criteria: random and high out-
degree based (i.e., consisting of the nodes with out-degree
at least d, for different choices of d). In Figure 7, we show
the effect of “freezing” the states of all nodes in S at value 1
(by setting their tdown to be very high values) for one of the
networks we consider (refer to the curves labeled “state=1”
in this figure); only the results for the choice of d = 15 and
d = 10, corresponding to S having about 3.5% and 14.5%
of the nodes, respectively, are shown here. We observe that
freezing these top 3.5% high out-degree nodes results in a
lot more nodes staying in state 1 (Figure 7(a)), compared to
the baseline (which corresponds to the setting without any
frozen nodes), and to random choice of a similar fraction of
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Figure 7: For network 1049, (a) number of nodes currently in state 1, (b) number of nodes transitioning to
state 1, and (c) cumulative number of nodes ever to reach state 1. The green curve is the baseline condition.
The blue and brown curves fix the nodes that have out-degree at least 10 and 15, respectively, in state 0
and hence decrease the numbers of nodes in state 1 in the steady state and lower the fractions of nodes to
ever reach state 1. The orange and purple curves, corresponding to fixing the same nodes in state 1, serve
to increase the nodes in state 1. In fact, 3.5% of nodes fixed in state 1 (purple curve) is almost as effective
as 14% of nodes fixed in state 1 (orange curve).

nodes (not shown here because of space constraints).

Similarly, the number of nodes which were ever in state 1
(which models individuals who might have ever smoked) is
also much larger than the baseline (Figure 7(c)) and ran-
dom. This suggests that if high out-degree individuals start
smoking, it causes high prevalence of smoking. This raises
a natural question: does this behavior also hold for smok-
ing cessation? Indeed it does, as shown by the curves la-
beled “state=0” in Figure 7. Here, we freeze the states of
the nodes in S to 0. Figure 7(a) shows that the number
of nodes in state 1 at any time is much smaller than the
baseline; further, the number of nodes ever in state 1 is also
much smaller. As in the earlier scenario, we find that freez-
ing 3.5% of the nodes to 0 is as effective as freezing 14.5%
of the nodes at 0, with respect to the number of nodes in
state 1 at any time. As mentioned earlier, the results for
random choice make very minimal change in both scenarios,
and are not shown here. These results are consistent with
experimentally determined peer effects of smoking [8].

7. CONCLUSIONS
We present a novel model of complex contagion, the bi-
threshold model, motivated by non-monotonic diffusion phe-
nomena such as the spread of smoking behavior. Through
theoretical and simulation results on networks from the Add
Health survey, we find that this model captures a number of
features of observed smoking behavior, such as the impact
of peer-influence on smoking and its cessation. We also ex-
amine the computational complexity of determining funda-
mental dynamical properties of this model. The hardness re-
sults for absolute thresholds also hold for relative thresholds
where thresholds are normalized by a node’s in-degree; sim-
ulations can be run with relative thresholds as well. There
are several directions for further research. Theoretically, it
would be of interest to establish the complexity of the reach-
ability problem for complex contagions, and to identify fur-
ther differences in the structures of the phase spaces between
undirected and directed graphs. From a practical perspec-
tive, a useful research direction is to identify and explore
other contexts where the bi-threshold model (or a suitable
generalization thereof) can be utilized.
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